Assumptions:
TeX:
\theta_{2}\!\left(z + \frac{1}{2} , \tau\right) = -\theta_{1}\!\left(z , \tau\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("47f6dd"), Formula(Equal(JacobiTheta(2, Add(z, Div(1, 2)), tau), Neg(JacobiTheta(1, z, tau)))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))