Assumptions:
TeX:
K(m) = \int_{0}^{1} \frac{1}{\sqrt{1 - {x}^{2}} \sqrt{1 - m {x}^{2}}} \, dx
m \in \mathbb{C} \setminus \left[1, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| EllipticK | Legendre complete elliptic integral of the first kind | |
| Integral | Integral | |
| Sqrt | Principal square root | |
| Pow | Power | |
| CC | Complex numbers | |
| ClosedOpenInterval | Closed-open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("47dead"),
Formula(Equal(EllipticK(m), Integral(Div(1, Mul(Sqrt(Sub(1, Pow(x, 2))), Sqrt(Sub(1, Mul(m, Pow(x, 2)))))), For(x, 0, 1)))),
Variables(m),
Assumptions(Element(m, SetMinus(CC, ClosedOpenInterval(1, Infinity)))))