Assumptions:
TeX:
K(m) = \int_{0}^{1} \frac{1}{\sqrt{1 - {x}^{2}} \sqrt{1 - m {x}^{2}}} \, dx m \in \mathbb{C} \setminus \left[1, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
EllipticK | Legendre complete elliptic integral of the first kind | |
Integral | Integral | |
Sqrt | Principal square root | |
Pow | Power | |
CC | Complex numbers | |
ClosedOpenInterval | Closed-open interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("47dead"), Formula(Equal(EllipticK(m), Integral(Div(1, Mul(Sqrt(Sub(1, Pow(x, 2))), Sqrt(Sub(1, Mul(m, Pow(x, 2)))))), For(x, 0, 1)))), Variables(m), Assumptions(Element(m, SetMinus(CC, ClosedOpenInterval(1, Infinity)))))