Fungrim home page

Fungrim entry: 47acde

Table of simple expressions involving π\pi to 50 digits
xx x  (nearest 50D)x \; (\text{nearest } 50 \text{D})
π\pi 3.1415926535897932384626433832795028841971693993751
2π2 \pi 6.2831853071795864769252867665590057683943387987502
3π3 \pi 9.4247779607693797153879301498385086525915081981253
4π4 \pi 12.566370614359172953850573533118011536788677597500
π2\frac{\pi}{2} 1.5707963267948966192313216916397514420985846996876
3π2\frac{3 \pi}{2} 4.7123889803846898576939650749192543262957540990627
π3\frac{\pi}{3} 1.0471975511965977461542144610931676280657231331250
2π3\frac{2 \pi}{3} 2.0943951023931954923084289221863352561314462662501
π4\frac{\pi}{4} 0.78539816339744830961566084581987572104929234984378
3π4\frac{3 \pi}{4} 2.3561944901923449288469825374596271631478770495313
π5\frac{\pi}{5} 0.62831853071795864769252867665590057683943387987502
2π5\frac{2 \pi}{5} 1.2566370614359172953850573533118011536788677597500
3π5\frac{3 \pi}{5} 1.8849555921538759430775860299677017305183016396251
4π5\frac{4 \pi}{5} 2.5132741228718345907701147066236023073577355195001
π6\frac{\pi}{6} 0.52359877559829887307710723054658381403286156656252
5π6\frac{5 \pi}{6} 2.6179938779914943653855361527329190701643078328126
1π\frac{1}{\pi} 0.31830988618379067153776752674502872406891929148091
2π\frac{2}{\pi} 0.63661977236758134307553505349005744813783858296183
12π\frac{1}{2 \pi} 0.15915494309189533576888376337251436203445964574046
π2{\pi}^{2} 9.8696044010893586188344909998761511353136994072408
(2π)2{\left(2 \pi\right)}^{2} 39.478417604357434475337963999504604541254797628963
π22\frac{{\pi}^{2}}{2} 4.9348022005446793094172454999380755676568497036204
π24\frac{{\pi}^{2}}{4} 2.4674011002723396547086227499690377838284248518102
π26\frac{{\pi}^{2}}{6} 1.6449340668482264364724151666460251892189499012068
1π2\frac{1}{{\pi}^{2}} 0.10132118364233777144387946320972763890435877467225
1(2π)2\frac{1}{{\left(2 \pi\right)}^{2}} 0.025330295910584442860969865802431909726089693668062
π3{\pi}^{3} 31.006276680299820175476315067101395202225288565885
π4{\pi}^{4} 97.409091034002437236440332688705111249727585672685
π\sqrt{\pi} 1.7724538509055160272981674833411451827975494561224
2π\sqrt{2 \pi} 2.5066282746310005024157652848110452530069867406099
1π\frac{1}{\sqrt{\pi}} 0.56418958354775628694807945156077258584405062932900
12π\frac{1}{\sqrt{2 \pi}} 0.39894228040143267793994605993438186847585863116493
log(π)\log(\pi) 1.1447298858494001741434273513530587116472948129153
log ⁣(2π)\log\!\left(2 \pi\right) 1.8378770664093454835606594728112352797227949472756
12log ⁣(2π)\frac{1}{2} \log\!\left(2 \pi\right) 0.91893853320467274178032973640561763986139747363778
eπ{e}^{\pi} 23.140692632779269005729086367948547380266106242600
eπ/2{e}^{\pi / 2} 4.8104773809653516554730356667038331263901708746645
e2π{e}^{2 \pi} 535.49165552476473650304932958904718147780579760329
eπ{e}^{-\pi} 0.043213918263772249774417737171728011275728109810633
eπ/2{e}^{-\pi / 2} 0.20787957635076190854695561983497877003387784163177
e2π{e}^{-2 \pi} 0.0018674427317079888144302129348270303934228050024753
eππ{e}^{\pi} - \pi 19.999099979189475767266442984669044496068936843225
Definitions:
Fungrim symbol Notation Short description
Piπ\pi The constant pi (3.14...)
Powab{a}^{b} Power
Sqrtz\sqrt{z} Principal square root
Loglog(z)\log(z) Natural logarithm
Expez{e}^{z} Exponential function
Source code for this entry:
Entry(ID("47acde"),
    Description("Table of simple expressions involving", Pi, "to 50 digits"),
    Table(Var(x), TableValueHeadings(x, NearestDecimal(x, 50)), TableSplit(1), List(Tuple(Pi, Decimal("3.1415926535897932384626433832795028841971693993751")), Tuple(Mul(2, Pi), Decimal("6.2831853071795864769252867665590057683943387987502")), Tuple(Mul(3, Pi), Decimal("9.4247779607693797153879301498385086525915081981253")), Tuple(Mul(4, Pi), Decimal("12.566370614359172953850573533118011536788677597500")), Tuple(Div(Pi, 2), Decimal("1.5707963267948966192313216916397514420985846996876")), Tuple(Div(Mul(3, Pi), 2), Decimal("4.7123889803846898576939650749192543262957540990627")), Tuple(Div(Pi, 3), Decimal("1.0471975511965977461542144610931676280657231331250")), Tuple(Div(Mul(2, Pi), 3), Decimal("2.0943951023931954923084289221863352561314462662501")), Tuple(Div(Pi, 4), Decimal("0.78539816339744830961566084581987572104929234984378")), Tuple(Div(Mul(3, Pi), 4), Decimal("2.3561944901923449288469825374596271631478770495313")), Tuple(Div(Pi, 5), Decimal("0.62831853071795864769252867665590057683943387987502")), Tuple(Div(Mul(2, Pi), 5), Decimal("1.2566370614359172953850573533118011536788677597500")), Tuple(Div(Mul(3, Pi), 5), Decimal("1.8849555921538759430775860299677017305183016396251")), Tuple(Div(Mul(4, Pi), 5), Decimal("2.5132741228718345907701147066236023073577355195001")), Tuple(Div(Pi, 6), Decimal("0.52359877559829887307710723054658381403286156656252")), Tuple(Div(Mul(5, Pi), 6), Decimal("2.6179938779914943653855361527329190701643078328126")), Tuple(Div(1, Pi), Decimal("0.31830988618379067153776752674502872406891929148091")), Tuple(Div(2, Pi), Decimal("0.63661977236758134307553505349005744813783858296183")), Tuple(Div(1, Mul(2, Pi)), Decimal("0.15915494309189533576888376337251436203445964574046")), Tuple(Pow(Pi, 2), Decimal("9.8696044010893586188344909998761511353136994072408")), Tuple(Pow(Mul(2, Pi), 2), Decimal("39.478417604357434475337963999504604541254797628963")), Tuple(Div(Pow(Pi, 2), 2), Decimal("4.9348022005446793094172454999380755676568497036204")), Tuple(Div(Pow(Pi, 2), 4), Decimal("2.4674011002723396547086227499690377838284248518102")), Tuple(Div(Pow(Pi, 2), 6), Decimal("1.6449340668482264364724151666460251892189499012068")), Tuple(Div(1, Pow(Pi, 2)), Decimal("0.10132118364233777144387946320972763890435877467225")), Tuple(Div(1, Pow(Mul(2, Pi), 2)), Decimal("0.025330295910584442860969865802431909726089693668062")), Tuple(Pow(Pi, 3), Decimal("31.006276680299820175476315067101395202225288565885")), Tuple(Pow(Pi, 4), Decimal("97.409091034002437236440332688705111249727585672685")), Tuple(Sqrt(Pi), Decimal("1.7724538509055160272981674833411451827975494561224")), Tuple(Sqrt(Mul(2, Pi)), Decimal("2.5066282746310005024157652848110452530069867406099")), Tuple(Div(1, Sqrt(Pi)), Decimal("0.56418958354775628694807945156077258584405062932900")), Tuple(Div(1, Sqrt(Mul(2, Pi))), Decimal("0.39894228040143267793994605993438186847585863116493")), Tuple(Log(Pi), Decimal("1.1447298858494001741434273513530587116472948129153")), Tuple(Log(Mul(2, Pi)), Decimal("1.8378770664093454835606594728112352797227949472756")), Tuple(Mul(Div(1, 2), Log(Mul(2, Pi))), Decimal("0.91893853320467274178032973640561763986139747363778")), Tuple(Exp(Pi), Decimal("23.140692632779269005729086367948547380266106242600")), Tuple(Exp(Div(Pi, 2)), Decimal("4.8104773809653516554730356667038331263901708746645")), Tuple(Exp(Mul(2, Pi)), Decimal("535.49165552476473650304932958904718147780579760329")), Tuple(Exp(Neg(Pi)), Decimal("0.043213918263772249774417737171728011275728109810633")), Tuple(Exp(Neg(Div(Pi, 2))), Decimal("0.20787957635076190854695561983497877003387784163177")), Tuple(Exp(Neg(Mul(2, Pi))), Decimal("0.0018674427317079888144302129348270303934228050024753")), Tuple(Sub(Exp(Pi), Pi), Decimal("19.999099979189475767266442984669044496068936843225")))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC