Assumptions:
TeX:
\theta_{3}\!\left(0 , \frac{\tau}{2}\right) \theta_{4}\!\left(0 , \frac{\tau}{2}\right) = \theta_{4}^{2}\!\left(0, \tau\right)
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Pow | Power | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("476642"),
Formula(Equal(Mul(JacobiTheta(3, 0, Div(tau, 2)), JacobiTheta(4, 0, Div(tau, 2))), Pow(JacobiTheta(4, 0, tau), 2))),
Variables(tau),
Assumptions(Element(tau, HH)))