Assumptions:
TeX:
\int_{-1}^{1} U_{n}\!\left(x\right) U_{m}\!\left(x\right) \sqrt{1 - {x}^{2}} \, dx = \frac{\pi}{2} \delta_{(n,m)} n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, m \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ChebyshevU | Chebyshev polynomial of the second kind | |
Sqrt | Principal square root | |
Pow | Power | |
ConstPi | The constant pi (3.14...) | |
KroneckerDelta | Kronecker delta | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("473c36"), Formula(Equal(Integral(Mul(Mul(ChebyshevU(n, x), ChebyshevU(m, x)), Sqrt(Sub(1, Pow(x, 2)))), Tuple(x, -1, 1)), Mul(Div(ConstPi, 2), KroneckerDelta(n, m)))), Variables(n, m), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(m, ZZGreaterEqual(0)))))