Fungrim home page

Fungrim entry: 47331d

atan ⁣(x+y)atan ⁣(x)=atan2 ⁣(y,1+x(x+y))\left|\operatorname{atan}\!\left(x + y\right) - \operatorname{atan}\!\left(x\right)\right| = \operatorname{atan2}\!\left(\left|y\right|, 1 + x \left(x + y\right)\right)
Assumptions:xRandyRx \in \mathbb{R} \,\mathbin{\operatorname{and}}\, y \in \mathbb{R}
TeX:
\left|\operatorname{atan}\!\left(x + y\right) - \operatorname{atan}\!\left(x\right)\right| = \operatorname{atan2}\!\left(\left|y\right|, 1 + x \left(x + y\right)\right)

x \in \mathbb{R} \,\mathbin{\operatorname{and}}\, y \in \mathbb{R}
Definitions:
Fungrim symbol Notation Short description
Absz\left|z\right| Absolute value
Atanatan ⁣(z)\operatorname{atan}\!\left(z\right) Inverse tangent
Atan2atan2 ⁣(y,x)\operatorname{atan2}\!\left(y, x\right) Two-argument inverse tangent
RRR\mathbb{R} Real numbers
Source code for this entry:
Entry(ID("47331d"),
    Formula(Equal(Abs(Sub(Atan(Add(x, y)), Atan(x))), Atan2(Abs(y), Add(1, Mul(x, Add(x, y)))))),
    Variables(x, y),
    Assumptions(And(Element(x, RR), Element(y, RR))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC