Assumptions:
TeX:
\theta_{2}\!\left(z , \tau\right) = {e}^{\pi i \tau / 4} \left(w + {w}^{-1}\right) \prod_{n=1}^{\infty} \left(1 - {q}^{2 n}\right) \left(1 + {q}^{2 n} {w}^{2}\right) \left(1 + {q}^{2 n} {w}^{-2}\right)\; \text{ where } q = {e}^{\pi i \tau},\;w = {e}^{\pi i z} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
Pow | Power | |
Product | Product | |
Infinity | Positive infinity | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("465810"), Formula(Where(Equal(JacobiTheta(2, z, tau), Mul(Mul(Exp(Div(Mul(Mul(Pi, ConstI), tau), 4)), Add(w, Pow(w, -1))), Product(Mul(Mul(Sub(1, Pow(q, Mul(2, n))), Add(1, Mul(Pow(q, Mul(2, n)), Pow(w, 2)))), Add(1, Mul(Pow(q, Mul(2, n)), Pow(w, -2)))), For(n, 1, Infinity)))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau))), Equal(w, Exp(Mul(Mul(Pi, ConstI), z))))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))