Fungrim home page

Fungrim entry: 4644c0

γ=limn[(k=1n1k)log(n)]\gamma = \lim_{n \to \infty} \left[\left(\sum_{k=1}^{n} \frac{1}{k}\right) - \log(n)\right]
\gamma = \lim_{n \to \infty} \left[\left(\sum_{k=1}^{n} \frac{1}{k}\right) - \log(n)\right]
Fungrim symbol Notation Short description
ConstGammaγ\gamma The constant gamma (0.577...)
SequenceLimitlimnaf(n)\lim_{n \to a} f(n) Limiting value of sequence
Sumnf(n)\sum_{n} f(n) Sum
Loglog(z)\log(z) Natural logarithm
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(ConstGamma, SequenceLimit(Brackets(Sub(Parentheses(Sum(Div(1, k), For(k, 1, n))), Log(n))), For(n, Infinity)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC