Assumptions:
TeX:
\sum_{k=1}^{n} \psi\!\left(\frac{k}{n}\right) {e}^{2 \pi r k i / n} = n \log\!\left(1 - {e}^{2 \pi r i / n}\right)
n \in \mathbb{Z}_{\ge 2} \;\mathbin{\operatorname{and}}\; r \in \{1, 2, \ldots, n - 1\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sum | Sum | |
| DigammaFunction | Digamma function | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| Log | Natural logarithm | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| Range | Integers between given endpoints |
Source code for this entry:
Entry(ID("458a97"),
Formula(Equal(Sum(Mul(DigammaFunction(Div(k, n)), Exp(Div(Mul(Mul(Mul(Mul(2, Pi), r), k), ConstI), n))), For(k, 1, n)), Mul(n, Log(Sub(1, Exp(Div(Mul(Mul(Mul(2, Pi), r), ConstI), n))))))),
Variables(r, n),
Assumptions(And(Element(n, ZZGreaterEqual(2)), Element(r, Range(1, Sub(n, 1))))))