References:
- https://math.stackexchange.com/questions/1760270/closed-form-of-an-integral-involving-a-jacobi-theta-function-int-0-infty
TeX:
\int_{0}^{\infty} \frac{\theta_{4}^{8}\!\left(0, i t\right)}{1 + {t}^{2}} \, dt = \frac{20 \zeta\!\left(3\right)}{{\pi}^{3}}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Integral | Integral | |
Pow | Power | |
JacobiTheta | Jacobi theta function | |
ConstI | Imaginary unit | |
Infinity | Positive infinity | |
RiemannZeta | Riemann zeta function | |
Pi | The constant pi (3.14...) |
Source code for this entry:
Entry(ID("45267a"), Formula(Equal(Integral(Div(Pow(JacobiTheta(4, 0, Mul(ConstI, t)), 8), Add(1, Pow(t, 2))), For(t, 0, Infinity)), Div(Mul(20, RiemannZeta(3)), Pow(Pi, 3)))), References("https://math.stackexchange.com/questions/1760270/closed-form-of-an-integral-involving-a-jacobi-theta-function-int-0-infty"))