Fungrim home page

Fungrim entry: 44ad09

{W0 ⁣(x):x(,e1)}={ycot ⁣(y)+yi:y(0,π)}\left\{ W_{0}\!\left(x\right) : x \in \left(-\infty, -{e}^{-1}\right) \right\} = \left\{ -y \cot\!\left(y\right) + y i : y \in \left(0, \pi\right) \right\}
TeX:
\left\{ W_{0}\!\left(x\right) : x \in \left(-\infty, -{e}^{-1}\right) \right\} = \left\{ -y \cot\!\left(y\right) + y i : y \in \left(0, \pi\right) \right\}
Definitions:
Fungrim symbol Notation Short description
SetBuilder{f ⁣(x):P ⁣(x)}\left\{ f\!\left(x\right) : P\!\left(x\right) \right\} Set comprehension
LambertWWk ⁣(z)W_{k}\!\left(z\right) Lambert W-function
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
Expez{e}^{z} Exponential function
ConstIii Imaginary unit
ConstPiπ\pi The constant pi (3.14...)
Source code for this entry:
Entry(ID("44ad09"),
    Formula(Equal(SetBuilder(LambertW(0, x), x, Element(x, OpenInterval(Neg(Infinity), Neg(Exp(-1))))), SetBuilder(Add(Mul(Neg(y), Cot(y)), Mul(y, ConstI)), y, Element(y, OpenInterval(0, ConstPi))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC