Fungrim home page

Fungrim entry: 4491b8

dndznez=ez\frac{d^{n}}{{d z}^{n}} {e}^{z} = {e}^{z}
Assumptions:zC  and  nZ0z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
TeX:
\frac{d^{n}}{{d z}^{n}} {e}^{z} = {e}^{z}

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol Notation Short description
ComplexDerivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Complex derivative
Expez{e}^{z} Exponential function
CCC\mathbb{C} Complex numbers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("4491b8"),
    Formula(Equal(ComplexDerivative(Exp(z), For(z, z, n)), Exp(z))),
    Variables(z, n),
    Assumptions(And(Element(z, CC), Element(n, ZZGreaterEqual(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC