Assumptions:
TeX:
\zeta\!\left(s, a\right) = \sum_{n=0}^{\infty} \frac{1}{{\left(n + a\right)}^{s}}
s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 1 \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \setminus \{0, -1, \ldots\}Definitions:
| Fungrim symbol | Notation | Short description | 
|---|---|---|
| HurwitzZeta | Hurwitz zeta function | |
| Sum | Sum | |
| Pow | Power | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Re | Real part | |
| ZZLessEqual | Integers less than or equal to n | 
Source code for this entry:
Entry(ID("448d90"),
    Formula(Equal(HurwitzZeta(s, a), Sum(Div(1, Pow(Add(n, a), s)), For(n, 0, Infinity)))),
    Variables(s, a),
    Assumptions(And(Element(s, CC), Greater(Re(s), 1), Element(a, SetMinus(CC, ZZLessEqual(0))))))