Assumptions:
References:
- Sequence A060691 in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS)
TeX:
\left[ \frac{d^{n}}{{d x}^{n}} \operatorname{agm}\!\left(1, x\right) \right]_{x = 1} = \frac{{\left(-1\right)}^{n} n !}{{8}^{n}} \text{A060691}\!\left(n\right) n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
AGM | Arithmetic-geometric mean | |
Pow | Power | |
Factorial | Factorial | |
SloaneA | Sequence X in Sloane's OEIS | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("447541"), Formula(Equal(ComplexDerivative(AGM(1, x), For(x, 1, n)), Mul(Div(Mul(Pow(-1, n), Factorial(n)), Pow(8, n)), SloaneA("060691", n)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))))