Fungrim home page

Fungrim entry: 43fa0e

θ1 ⁣(z+m+nτ,τ)=(1)m+neπi(τn2+2nz)θ1 ⁣(z,τ)\theta_{1}\!\left(z + m + n \tau , \tau\right) = {\left(-1\right)}^{m + n} {e}^{-\pi i \left(\tau {n}^{2} + 2 n z\right)} \theta_{1}\!\left(z , \tau\right)
Assumptions:zC  and  τH  and  mZ  and  nZz \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}
TeX:
\theta_{1}\!\left(z + m + n \tau , \tau\right) = {\left(-1\right)}^{m + n} {e}^{-\pi i \left(\tau {n}^{2} + 2 n z\right)} \theta_{1}\!\left(z , \tau\right)

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}
Definitions:
Fungrim symbol Notation Short description
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
Powab{a}^{b} Power
Expez{e}^{z} Exponential function
Piπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("43fa0e"),
    Formula(Equal(JacobiTheta(1, Add(z, Add(m, Mul(n, tau))), tau), Mul(Mul(Pow(-1, Add(m, n)), Exp(Neg(Mul(Mul(Pi, ConstI), Add(Mul(tau, Pow(n, 2)), Mul(Mul(2, n), z)))))), JacobiTheta(1, z, tau)))),
    Variables(z, tau, m, n),
    Assumptions(And(Element(z, CC), Element(tau, HH), Element(m, ZZ), Element(n, ZZ))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC