Assumptions:
TeX:
\theta_{1}\!\left(z + m + n \tau , \tau\right) = {\left(-1\right)}^{m + n} {e}^{-\pi i \left(\tau {n}^{2} + 2 n z\right)} \theta_{1}\!\left(z , \tau\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
Pow | Power | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
CC | Complex numbers | |
HH | Upper complex half-plane | |
ZZ | Integers |
Source code for this entry:
Entry(ID("43fa0e"), Formula(Equal(JacobiTheta(1, Add(z, Add(m, Mul(n, tau))), tau), Mul(Mul(Pow(-1, Add(m, n)), Exp(Neg(Mul(Mul(Pi, ConstI), Add(Mul(tau, Pow(n, 2)), Mul(Mul(2, n), z)))))), JacobiTheta(1, z, tau)))), Variables(z, tau, m, n), Assumptions(And(Element(z, CC), Element(tau, HH), Element(m, ZZ), Element(n, ZZ))))