Fungrim home page

Fungrim entry: 4366b2

gcd ⁣(a,gcd ⁣(b,c))=gcd ⁣(gcd ⁣(a,b),c)\gcd\!\left(a, \gcd\!\left(b, c\right)\right) = \gcd\!\left(\gcd\!\left(a, b\right), c\right)
Assumptions:aZandbZandcZa \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, b \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, c \in \mathbb{Z}
TeX:
\gcd\!\left(a, \gcd\!\left(b, c\right)\right) = \gcd\!\left(\gcd\!\left(a, b\right), c\right)

a \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, b \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, c \in \mathbb{Z}
Definitions:
Fungrim symbol Notation Short description
GCDgcd ⁣(n,k)\gcd\!\left(n, k\right) Greatest common divisor
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("4366b2"),
    Formula(Equal(GCD(a, GCD(b, c)), GCD(GCD(a, b), c))),
    Variables(a, b, c),
    Assumptions(And(Element(a, ZZ), Element(b, ZZ), Element(c, ZZ))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC