Fungrim home page

Fungrim entry: 432bee

Symbol: KeiperLiLambda λn\lambda_{n} Keiper-Li coefficient
KeiperLiLambda(n), rendered as λn\lambda_{n}, denotes a power series coefficient associated with the Riemann zeta function.
The definition fcab61 follows Keiper (1992). Li (1997) defines the coefficients with a different scaling factor, equivalent to nλnn \lambda_{n} in Keiper's (and Fungrim's) notation.
References:
  • https://doi.org/10.2307/2153215
  • https://doi.org/10.1006/jnth.1997.2137
  • https://doi.org/10.7169/facm/1317045228
Definitions:
Fungrim symbol Notation Short description
KeiperLiLambdaλn\lambda_{n} Keiper-Li coefficient
Source code for this entry:
Entry(ID("432bee"),
    SymbolDefinition(KeiperLiLambda, KeiperLiLambda(n), "Keiper-Li coefficient"),
    Description(SourceForm(KeiperLiLambda(n)), ", rendered as", KeiperLiLambda(n), ", denotes a power series coefficient associated with the Riemann zeta function. "),
    Description("The definition", EntryReference("fcab61"), "follows Keiper (1992). Li (1997) defines the coefficients with a different scaling factor, equivalent to", Mul(n, KeiperLiLambda(n)), "in Keiper's (and Fungrim's) notation."),
    References("https://doi.org/10.2307/2153215", "https://doi.org/10.1006/jnth.1997.2137", "https://doi.org/10.7169/facm/1317045228"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC