Assumptions:
TeX:
{\left(T_{n}\!\left(x\right)\right)}^{2} + \left({x}^{2} - 1\right) {\left(U_{n - 1}\!\left(x\right)\right)}^{2} = 1
n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Pow | Power | |
| ChebyshevT | Chebyshev polynomial of the first kind | |
| ChebyshevU | Chebyshev polynomial of the second kind | |
| ZZ | Integers | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("42eb01"),
Formula(Equal(Add(Pow(ChebyshevT(n, x), 2), Mul(Sub(Pow(x, 2), 1), Pow(ChebyshevU(Sub(n, 1), x), 2))), 1)),
Variables(n, x),
Assumptions(And(Element(n, ZZ), Element(x, CC))))