Assumptions:
TeX:
\theta^{(r)}_{2}\!\left(z , \tau\right) = {\left(\pi i\right)}^{r} {e}^{\pi i \tau / 4} \sum_{n=-\infty}^{\infty} {\left(2 n + 1\right)}^{r} {q}^{n \left(n + 1\right)} {w}^{2 n + 1}\; \text{ where } q = {e}^{\pi i \tau},\;w = {e}^{\pi i z}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Pow | Power | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| Exp | Exponential function | |
| Sum | Sum | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| HH | Upper complex half-plane | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("42d832"),
Formula(Equal(JacobiTheta(2, z, tau, r), Where(Mul(Mul(Pow(Mul(Pi, ConstI), r), Exp(Div(Mul(Mul(Pi, ConstI), tau), 4))), Sum(Mul(Mul(Pow(Add(Mul(2, n), 1), r), Pow(q, Mul(n, Add(n, 1)))), Pow(w, Add(Mul(2, n), 1))), For(n, Neg(Infinity), Infinity))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau))), Equal(w, Exp(Mul(Mul(Pi, ConstI), z)))))),
Variables(z, tau, r),
Assumptions(And(Element(z, CC), Element(tau, HH), Element(r, ZZGreaterEqual(0)))))