Fungrim home page

Fungrim entry: 42d727

π=5φ+22φ2F1 ⁣(1,1,32,1(2φ)2)\pi = \frac{5 \sqrt{\varphi + 2}}{2 \varphi} \,{}_2F_1\!\left(1, 1, \frac{3}{2}, \frac{1}{{\left(2 \varphi\right)}^{2}}\right)
TeX:
\pi = \frac{5 \sqrt{\varphi + 2}}{2 \varphi} \,{}_2F_1\!\left(1, 1, \frac{3}{2}, \frac{1}{{\left(2 \varphi\right)}^{2}}\right)
Definitions:
Fungrim symbol Notation Short description
Piπ\pi The constant pi (3.14...)
Sqrtz\sqrt{z} Principal square root
GoldenRatioφ\varphi The golden ratio (1.618...)
Hypergeometric2F12F1 ⁣(a,b,c,z)\,{}_2F_1\!\left(a, b, c, z\right) Gauss hypergeometric function
Powab{a}^{b} Power
Source code for this entry:
Entry(ID("42d727"),
    Formula(Equal(Pi, Mul(Div(Mul(5, Sqrt(Add(GoldenRatio, 2))), Mul(2, GoldenRatio)), Hypergeometric2F1(1, 1, Div(3, 2), Div(1, Pow(Mul(2, GoldenRatio), 2)))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC