Assumptions:
TeX:
R_C\!\left(x, y\right) = R_{-1 / 2}\!\left(\left[\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right], \left[x, y, y\right]\right)
x \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \setminus \left(-\infty, 0\right]Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRC | Degenerate Carlson symmetric elliptic integral of the first kind | |
| CarlsonHypergeometricR | Carlson multivariate hypergeometric function | |
| CC | Complex numbers | |
| OpenInterval | Open interval | |
| Infinity | Positive infinity | |
| OpenClosedInterval | Open-closed interval |
Source code for this entry:
Entry(ID("42c7f1"),
Formula(Equal(CarlsonRC(x, y), CarlsonHypergeometricR(Neg(Div(1, 2)), List(Div(1, 2), Div(1, 2), Div(1, 2)), List(x, y, y)))),
Variables(x, y),
Assumptions(And(Element(x, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(y, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))