Assumptions:
TeX:
\theta_{4}\!\left(z + \frac{1}{2} \tau , \tau\right) = {e}^{-\pi i \left(z + \tau / 4\right)} i \theta_{1}\!\left(z , \tau\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("429093"), Formula(Equal(JacobiTheta(4, Add(z, Mul(Div(1, 2), tau)), tau), Mul(Mul(Exp(Neg(Mul(Mul(Pi, ConstI), Add(z, Div(tau, 4))))), ConstI), JacobiTheta(1, z, tau)))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))