Fungrim home page

Fungrim entry: 423b36

asinh ⁣(xy)=xRC ⁣(y2+x2,y2)\operatorname{asinh}\!\left(\frac{x}{y}\right) = x R_C\!\left({y}^{2} + {x}^{2}, {y}^{2}\right)
Assumptions:y(0,)  and  xRy \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; x \in \mathbb{R}
TeX:
\operatorname{asinh}\!\left(\frac{x}{y}\right) = x R_C\!\left({y}^{2} + {x}^{2}, {y}^{2}\right)

y \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; x \in \mathbb{R}
Definitions:
Fungrim symbol Notation Short description
CarlsonRCRC ⁣(x,y)R_C\!\left(x, y\right) Degenerate Carlson symmetric elliptic integral of the first kind
Powab{a}^{b} Power
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
RRR\mathbb{R} Real numbers
Source code for this entry:
Entry(ID("423b36"),
    Formula(Equal(Asinh(Div(x, y)), Mul(x, CarlsonRC(Add(Pow(y, 2), Pow(x, 2)), Pow(y, 2))))),
    Variables(x, y),
    Assumptions(And(Element(y, OpenInterval(0, Infinity)), Element(x, RR))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC