Assumptions:
TeX:
\left(z + 1\right)_{k} = \frac{z + k}{z} \left(z\right)_{k}
z \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; k \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description | 
|---|---|---|
| RisingFactorial | Rising factorial | |
| CC | Complex numbers | |
| ZZGreaterEqual | Integers greater than or equal to n | 
Source code for this entry:
Entry(ID("41f950"),
    Formula(Equal(RisingFactorial(Add(z, 1), k), Mul(Div(Add(z, k), z), RisingFactorial(z, k)))),
    Variables(z, k),
    Assumptions(And(Element(z, SetMinus(CC, Set(0))), Element(k, ZZGreaterEqual(0)))))