Assumptions:
TeX:
2 a_{n + 1} = a_{n} + b_{n} \;\mathbin{\operatorname{and}}\; b_{n + 1}^{2} = a_{n} b_{n}\; \text{ where } \left(a_{k}, b_{k}\right) = \operatorname{agm}_{k}\!\left(a, b\right) n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Pow | Power | |
AGMSequence | Convergents in AGM iteration | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("41f67b"), Formula(Where(And(Equal(Mul(2, a_(Add(n, 1))), Add(a_(n), b_(n))), Equal(Pow(b_(Add(n, 1)), 2), Mul(a_(n), b_(n)))), Def(Tuple(a_(k), b_(k)), AGMSequence(k, a, b)))), Variables(n, a, b), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(a, CC), Element(b, CC))))