Assumptions:
TeX:
\operatorname{agm}\!\left(a, b\right) = \frac{\pi}{2 I}\; \text{ where } I = \int_{0}^{\pi / 2} \frac{1}{\sqrt{{a}^{2} \cos^{2}\!\left(x\right) + {b}^{2} \sin^{2}\!\left(x\right)}} \, dx a \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; b \in \left(0, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
AGM | Arithmetic-geometric mean | |
Pi | The constant pi (3.14...) | |
Integral | Integral | |
Sqrt | Principal square root | |
Pow | Power | |
Cos | Cosine | |
Sin | Sine | |
OpenInterval | Open interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("417619"), Formula(Equal(AGM(a, b), Where(Div(Pi, Mul(2, I)), Def(I, Integral(Div(1, Sqrt(Add(Mul(Pow(a, 2), Pow(Cos(x), 2)), Mul(Pow(b, 2), Pow(Sin(x), 2))))), For(x, 0, Div(Pi, 2))))))), Variables(a, b), Assumptions(And(Element(a, OpenInterval(0, Infinity)), Element(b, OpenInterval(0, Infinity)))))