Assumptions:
TeX:
\int_{0}^{\infty} {t}^{s - 1} \left(\theta_{3}\!\left(0 , i {t}^{2}\right) - 1\right) \, dt = {\pi}^{-s / 2} \Gamma\!\left(\frac{s}{2}\right) \zeta\!\left(s\right) s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 2
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Integral | Integral | |
Pow | Power | |
JacobiTheta | Jacobi theta function | |
ConstI | Imaginary unit | |
Infinity | Positive infinity | |
Pi | The constant pi (3.14...) | |
Gamma | Gamma function | |
RiemannZeta | Riemann zeta function | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("41631f"), Formula(Equal(Integral(Mul(Pow(t, Sub(s, 1)), Sub(JacobiTheta(3, 0, Mul(ConstI, Pow(t, 2))), 1)), For(t, 0, Infinity)), Mul(Mul(Pow(Pi, Neg(Div(s, 2))), Gamma(Div(s, 2))), RiemannZeta(s)))), Variables(s), Assumptions(And(Element(s, CC), Greater(Re(s), 2))))