Assumptions:
TeX:
R_F\!\left(0, x, y\right) = \frac{K\!\left(1 - \frac{y}{x}\right)}{\sqrt{x}}
x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|\arg(x) - \arg(y)\right| < \piDefinitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| CarlsonRF | Carlson symmetric elliptic integral of the first kind | |
| EllipticK | Legendre complete elliptic integral of the first kind | |
| Sqrt | Principal square root | |
| CC | Complex numbers | |
| Abs | Absolute value | |
| Arg | Complex argument | |
| Pi | The constant pi (3.14...) |
Source code for this entry:
Entry(ID("415ff0"),
Formula(Equal(CarlsonRF(0, x, y), Div(EllipticK(Sub(1, Div(y, x))), Sqrt(x)))),
Variables(x, y),
Assumptions(And(Element(x, CC), Element(y, CC), Less(Abs(Sub(Arg(x), Arg(y))), Pi))))