Assumptions:
TeX:
\frac{d^{r}}{{d a}^{r}} \zeta\!\left(s, a\right) = \left(1 - s - r\right)_{r} \zeta\!\left(s + r, a\right) s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; s \ne 1 \;\mathbin{\operatorname{and}}\; s + r \ne 1 \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0 \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
HurwitzZeta | Hurwitz zeta function | |
RisingFactorial | Rising factorial | |
CC | Complex numbers | |
Re | Real part | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("40c3e2"), Formula(Equal(ComplexDerivative(HurwitzZeta(s, a), For(a, a, r)), Mul(RisingFactorial(Sub(Sub(1, s), r), r), HurwitzZeta(Add(s, r), a)))), Variables(s, a, r), Assumptions(And(Element(s, CC), NotEqual(s, 1), NotEqual(Add(s, r), 1), Element(a, CC), Greater(Re(a), 0), Element(r, ZZGreaterEqual(0)))))