Assumptions:
TeX:
\mathcal{E}_{\rho} = \left\{ \frac{\rho {e}^{i \theta} + {\rho}^{-1} {e}^{-i \theta}}{2} : \theta \in \left[0, 2 \pi\right) \right\} \rho \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \rho > 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BernsteinEllipse | Bernstein ellipse with foci -1,+1 and semi-axis sum rho | |
Exp | Exponential function | |
ConstI | Imaginary unit | |
Pow | Power | |
ClosedOpenInterval | Closed-open interval | |
Pi | The constant pi (3.14...) | |
RR | Real numbers |
Source code for this entry:
Entry(ID("40baa9"), Formula(Equal(BernsteinEllipse(rho), Set(Div(Add(Mul(rho, Exp(Mul(ConstI, theta))), Mul(Pow(rho, -1), Exp(Neg(Mul(ConstI, theta))))), 2), ForElement(theta, ClosedOpenInterval(0, Mul(2, Pi)))))), Variables(rho), Assumptions(And(Element(rho, RR), Greater(rho, 1))))