Assumptions:
TeX:
\lim_{N \to \infty} \frac{1}{{N}^{n}} \left|\left\{ T : T \in {\left(\{1, 2, \ldots N\}\right)}^{n} \,\mathbin{\operatorname{and}}\, \gcd\!\left(T\right) = 1 \right\}\right| = \frac{1}{\zeta\!\left(n\right)}
n \in \mathbb{Z}_{\ge 2}Definitions:
| Fungrim symbol | Notation | Short description | 
|---|---|---|
| SequenceLimit | Limiting value of sequence | |
| Pow | Power | |
| Cardinality | Set cardinality | |
| SetBuilder | Set comprehension | |
| ZZBetween | Integers between a and b inclusive | |
| GCD | Greatest common divisor | |
| Infinity | Positive infinity | |
| RiemannZeta | Riemann zeta function | |
| ZZGreaterEqual | Integers greater than or equal to n | 
Source code for this entry:
Entry(ID("4099d2"),
    Formula(Equal(SequenceLimit(Mul(Div(1, Pow(N, n)), Cardinality(SetBuilder(T, T, And(Element(T, Pow(ZZBetween(1, N), n)), Equal(GCD(T), 1))))), N, Infinity), Div(1, RiemannZeta(n)))),
    Variables(n),
    Assumptions(Element(n, ZZGreaterEqual(2))))