Assumptions:
TeX:
\lim_{N \to \infty} \frac{1}{{N}^{n}} \left|\left\{ T : T \in {\left(\{1, 2, \ldots N\}\right)}^{n} \,\mathbin{\operatorname{and}}\, \gcd\!\left(T\right) = 1 \right\}\right| = \frac{1}{\zeta\!\left(n\right)} n \in \mathbb{Z}_{\ge 2}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
SequenceLimit | Limiting value of sequence | |
Pow | Power | |
Cardinality | Set cardinality | |
SetBuilder | Set comprehension | |
ZZBetween | Integers between a and b inclusive | |
GCD | Greatest common divisor | |
Infinity | Positive infinity | |
RiemannZeta | Riemann zeta function | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("4099d2"), Formula(Equal(SequenceLimit(Mul(Div(1, Pow(N, n)), Cardinality(SetBuilder(T, T, And(Element(T, Pow(ZZBetween(1, N), n)), Equal(GCD(T), 1))))), N, Infinity), Div(1, RiemannZeta(n)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(2))))