Assumptions:
TeX:
\lim_{N \to \infty} \frac{1}{{N}^{n}} \# \left\{ T : T \in {\left(\{1, 2, \ldots, N\}\right)}^{n} \;\mathbin{\operatorname{and}}\; \gcd(T) = 1 \right\} = \frac{1}{\zeta\!\left(n\right)}
n \in \mathbb{Z}_{\ge 2}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| SequenceLimit | Limiting value of sequence | |
| Pow | Power | |
| Cardinality | Set cardinality | |
| Range | Integers between given endpoints | |
| GCD | Greatest common divisor | |
| Infinity | Positive infinity | |
| RiemannZeta | Riemann zeta function | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("4099d2"),
Formula(Equal(SequenceLimit(Mul(Div(1, Pow(N, n)), Cardinality(Set(T, For(T), And(Element(T, Pow(Range(1, N), n)), Equal(GCD(T), 1))))), For(N, Infinity)), Div(1, RiemannZeta(n)))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(2))))