Assumptions:
TeX:
\frac{d^{2}}{{d z}^{2}} \sqrt{z} = -\frac{1}{4 {z}^{3 / 2}}
z \in \mathbb{C} \setminus \left(-\infty, 0\right]Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Derivative | Derivative | |
| Sqrt | Principal square root | |
| Pow | Power | |
| CC | Complex numbers | |
| OpenClosedInterval | Open-closed interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("3e71f4"),
Formula(Equal(Derivative(Sqrt(z), Tuple(z, z, 2)), Neg(Div(1, Mul(4, Pow(z, Div(3, 2))))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0)))))