Assumptions:
TeX:
\frac{d^{2}}{{d z}^{2}} \sqrt{z} = -\frac{1}{4 {z}^{3 / 2}} z \in \mathbb{C} \setminus \left(-\infty, 0\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Derivative | Derivative | |
Sqrt | Principal square root | |
Pow | Power | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("3e71f4"), Formula(Equal(Derivative(Sqrt(z), Tuple(z, z, 2)), Neg(Div(1, Mul(4, Pow(z, Div(3, 2))))))), Variables(z), Assumptions(Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0)))))