Assumptions:
TeX:
x \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
CarlsonRG | Carlson symmetric elliptic integral of the second kind | |
CarlsonRF | Carlson symmetric elliptic integral of the first kind | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("3e1435"), Equal(Add(Add(ComplexDerivative(CarlsonRG(x, y, z), For(x, x)), ComplexDerivative(CarlsonRG(x, y, z), For(y, y))), ComplexDerivative(CarlsonRG(x, y, z), For(z, z))), Mul(Div(1, 2), CarlsonRF(x, y, z))), Variables(x, y, z), Assumptions(And(Element(x, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(y, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))