Assumptions:
TeX:
B_{n,\chi} = {q}^{n - 1} \sum_{a=1}^{q} \chi(a) B_{n}\!\left(\frac{a}{q}\right)
q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| GeneralizedBernoulliB | Generalized Bernoulli number | |
| Pow | Power | |
| Sum | Sum | |
| BernoulliPolynomial | Bernoulli polynomial | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| DirichletGroup | Dirichlet characters with given modulus |
Source code for this entry:
Entry(ID("3e0817"),
Formula(Equal(GeneralizedBernoulliB(n, chi), Mul(Pow(q, Sub(n, 1)), Sum(Mul(chi(a), BernoulliPolynomial(n, Div(a, q))), For(a, 1, q))))),
Variables(q, chi, n),
Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(n, ZZGreaterEqual(0)))))