Fungrim home page

Fungrim entry: 3e05c6

RD ⁣(0,y,1)={3(K ⁣(1y)E ⁣(1y))1y,y13π4,y=1R_D\!\left(0, y, 1\right) = \begin{cases} \frac{3 \left(K\!\left(1 - y\right) - E\!\left(1 - y\right)\right)}{1 - y}, & y \ne 1\\\frac{3 \pi}{4}, & y = 1\\ \end{cases}
Assumptions:yCy \in \mathbb{C}
TeX:
R_D\!\left(0, y, 1\right) = \begin{cases} \frac{3 \left(K\!\left(1 - y\right) - E\!\left(1 - y\right)\right)}{1 - y}, & y \ne 1\\\frac{3 \pi}{4}, & y = 1\\ \end{cases}

y \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
CarlsonRDRD ⁣(x,y,z)R_D\!\left(x, y, z\right) Degenerate Carlson symmetric elliptic integral of the third kind
EllipticKK(m)K(m) Legendre complete elliptic integral of the first kind
EllipticEE(m)E(m) Legendre complete elliptic integral of the second kind
Piπ\pi The constant pi (3.14...)
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("3e05c6"),
    Formula(Equal(CarlsonRD(0, y, 1), Cases(Tuple(Div(Mul(3, Sub(EllipticK(Sub(1, y)), EllipticE(Sub(1, y)))), Sub(1, y)), NotEqual(y, 1)), Tuple(Div(Mul(3, Pi), 4), Equal(y, 1))))),
    Variables(y),
    Assumptions(Element(y, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC