Assumptions:
TeX:
\int_{-1}^{1} T_{n}\!\left(x\right) {x}^{m} \frac{1}{\sqrt{1 - {x}^{2}}} \, dx = 0
n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \{0, 1, \ldots, n - 1\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Integral | Integral | |
| ChebyshevT | Chebyshev polynomial of the first kind | |
| Pow | Power | |
| Sqrt | Principal square root | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| Range | Integers between given endpoints |
Source code for this entry:
Entry(ID("3d77ab"),
Formula(Equal(Integral(Mul(Mul(ChebyshevT(n, x), Pow(x, m)), Div(1, Sqrt(Sub(1, Pow(x, 2))))), For(x, -1, 1)), 0)),
Variables(n, m),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(m, Range(0, Sub(n, 1))))))