Assumptions:
TeX:
\int_{-1}^{1} T_{n}\!\left(x\right) {x}^{m} \frac{1}{\sqrt{1 - {x}^{2}}} \, dx = 0 n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \{0, 1, \ldots, n - 1\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Integral | Integral | |
ChebyshevT | Chebyshev polynomial of the first kind | |
Pow | Power | |
Sqrt | Principal square root | |
ZZGreaterEqual | Integers greater than or equal to n | |
Range | Integers between given endpoints |
Source code for this entry:
Entry(ID("3d77ab"), Formula(Equal(Integral(Mul(Mul(ChebyshevT(n, x), Pow(x, m)), Div(1, Sqrt(Sub(1, Pow(x, 2))))), For(x, -1, 1)), 0)), Variables(n, m), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(m, Range(0, Sub(n, 1))))))