Assumptions:
References:
- Jean-Pierre Massias, Jean-Louis Nicolas and Guy Robin (1989), Effective bounds for the maximal order of an element in the symmetric group, Mathematics of Computation, 53, 118, pp. 665-665, https://doi.org/10.1090/s0025-5718-1989-0979940-4
TeX:
\log\!\left(g(n)\right) \ge \sqrt{n \log(n)}
n \in \mathbb{Z}_{\ge 906}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Log | Natural logarithm | |
| LandauG | Landau's function | |
| Sqrt | Principal square root | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("3d5019"),
Formula(GreaterEqual(Log(LandauG(n)), Sqrt(Mul(n, Log(n))))),
Variables(n),
Assumptions(Element(n, ZZGreaterEqual(906))),
References("Jean-Pierre Massias, Jean-Louis Nicolas and Guy Robin (1989), Effective bounds for the maximal order of an element in the symmetric group, Mathematics of Computation, 53, 118, pp. 665-665, https://doi.org/10.1090/s0025-5718-1989-0979940-4"))