Assumptions:
TeX:
P_{n}\!\left(z\right) = {\left(\frac{z - 1}{2}\right)}^{n} \,{}_2F_1\!\left(-n, -n, 1, \frac{z + 1}{z - 1}\right) n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{1\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LegendrePolynomial | Legendre polynomial | |
Pow | Power | |
Hypergeometric2F1 | Gauss hypergeometric function | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("3c87b9"), Formula(Equal(LegendrePolynomial(n, z), Mul(Pow(Div(Sub(z, 1), 2), n), Hypergeometric2F1(Neg(n), Neg(n), 1, Div(Add(z, 1), Sub(z, 1)))))), Variables(n, z), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(z, SetMinus(CC, Set(1))))))