Assumptions:
TeX:
\left|{e}^{z} - \sum_{k=0}^{N - 1} \frac{{z}^{k}}{k !}\right| \le \frac{{\left|z\right|}^{N}}{N ! \left(1 - \frac{\left|z\right|}{N}\right)} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; N > \left|z\right|
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
Exp | Exponential function | |
Sum | Sum | |
Pow | Power | |
Factorial | Factorial | |
CC | Complex numbers | |
ZZ | Integers |
Source code for this entry:
Entry(ID("3c4480"), Formula(LessEqual(Abs(Sub(Exp(z), Sum(Div(Pow(z, k), Factorial(k)), For(k, 0, Sub(N, 1))))), Div(Pow(Abs(z), N), Mul(Factorial(N), Sub(1, Div(Abs(z), N)))))), Variables(z, N), Assumptions(And(Element(z, CC), Element(N, ZZ), Greater(N, Abs(z)))))