Assumptions:
Alternative assumptions:
TeX:
\frac{1}{\sqrt{z + x}} = \frac{1}{\sqrt{z}} \sum_{k=0}^{\infty} \frac{{\left(-1\right)}^{k} \left(\frac{1}{2}\right)_{k}}{{z}^{k} k !} {x}^{k}
z \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left(\left|x\right| \lt \left|z\right| \,\mathbin{\operatorname{and}}\, \left(\operatorname{Re}\!\left(z\right) \gt 0 \,\mathbin{\operatorname{or}}\, \operatorname{sgn}\!\left(\operatorname{Im}\!\left(x\right)\right) = \operatorname{sgn}\!\left(\operatorname{Im}\!\left(z\right)\right)\right)\right)
z \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, x \text{ is the generator of } \mathbb{C}[[x]]Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sqrt | Principal square root | |
| Pow | Power | |
| RisingFactorial | Rising factorial | |
| Factorial | Factorial | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| Abs | Absolute value | |
| Re | Real part | |
| Sign | Sign function | |
| Im | Imaginary part | |
| FormalPowerSeries | Formal power series |
Source code for this entry:
Entry(ID("3c2557"),
Formula(Equal(Div(1, Sqrt(Add(z, x))), Mul(Div(1, Sqrt(z)), Sum(Mul(Div(Mul(Pow(-1, k), RisingFactorial(Div(1, 2), k)), Mul(Pow(z, k), Factorial(k))), Pow(x, k)), Tuple(k, 0, Infinity))))),
Variables(z, x),
Assumptions(And(Element(z, SetMinus(CC, Set(0))), Element(x, CC), And(Less(Abs(x), Abs(z)), Or(Greater(Re(z), 0), Equal(Sign(Im(x)), Sign(Im(z)))))), And(Element(z, SetMinus(CC, Set(0))), FormalGenerator(x, FormalPowerSeries(CC, x)))))