Assumptions:
References:
- B. C. Berndt and A. J. Yee (2002) Ramanujan's Contributions to Eisenstein Series, Especially in His Lost Notebook. In: Kanemitsu S., Jia C. (eds) Number Theoretic Methods. Developments in Mathematics, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3675-5_3
TeX:
E'_{6}(\tau) = 2 \pi i \left(\frac{E_{2}\!\left(\tau\right) E_{6}\!\left(\tau\right) - E_{4}^{2}\!\left(\tau\right)}{2}\right) \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
EisensteinE | Normalized Eisenstein series | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
Pow | Power | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("3bfced"), Formula(Equal(ComplexDerivative(EisensteinE(6, tau), For(tau, tau)), Mul(Mul(Mul(2, Pi), ConstI), Parentheses(Div(Sub(Mul(EisensteinE(2, tau), EisensteinE(6, tau)), Pow(EisensteinE(4, tau), 2)), 2))))), Variables(tau), Assumptions(Element(tau, HH)), References("B. C. Berndt and A. J. Yee (2002) Ramanujan's Contributions to Eisenstein Series, Especially in His Lost Notebook. In: Kanemitsu S., Jia C. (eds) Number Theoretic Methods. Developments in Mathematics, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3675-5_3"))