Fungrim home page

Fungrim entry: 3b6175

RJ ⁣(0,y,z,yz)=32yzRF ⁣(0,y,z)R_J\!\left(0, y, z, \sqrt{y} \sqrt{z}\right) = \frac{3}{2 \sqrt{y} \sqrt{z}} R_F\!\left(0, y, z\right)
Assumptions:yC  and  zCy \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
TeX:
R_J\!\left(0, y, z, \sqrt{y} \sqrt{z}\right) = \frac{3}{2 \sqrt{y} \sqrt{z}} R_F\!\left(0, y, z\right)

y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
CarlsonRJRJ ⁣(x,y,z,w)R_J\!\left(x, y, z, w\right) Carlson symmetric elliptic integral of the third kind
Sqrtz\sqrt{z} Principal square root
CarlsonRFRF ⁣(x,y,z)R_F\!\left(x, y, z\right) Carlson symmetric elliptic integral of the first kind
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("3b6175"),
    Formula(Equal(CarlsonRJ(0, y, z, Mul(Sqrt(y), Sqrt(z))), Mul(Div(3, Mul(2, Mul(Sqrt(y), Sqrt(z)))), CarlsonRF(0, y, z)))),
    Variables(y, z),
    Assumptions(And(Element(y, CC), Element(z, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC