References:
- H. Jager, On the number of Dirichlet characters with modulus not exceeding x, Indagationes Mathematicae, Volume 76, Issue 5, 1973, Pages 452-455, https://doi.org/10.1016/1385-7258(73)90069-3
TeX:
\lim_{N \to \infty} \frac{\sum_{q=1}^{N} \# G^{\text{Primitive}}_{q}}{\sum_{q=1}^{N} \# G_{q}} = \frac{6}{{\pi}^{2}}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| SequenceLimit | Limiting value of sequence | |
| Sum | Sum | |
| Cardinality | Set cardinality | |
| PrimitiveDirichletCharacters | Primitive Dirichlet characters with given modulus | |
| DirichletGroup | Dirichlet characters with given modulus | |
| Infinity | Positive infinity | |
| Pow | Power | |
| Pi | The constant pi (3.14...) |
Source code for this entry:
Entry(ID("3b43b0"),
Formula(Equal(SequenceLimit(Div(Sum(Cardinality(PrimitiveDirichletCharacters(q)), For(q, 1, N)), Sum(Cardinality(DirichletGroup(q)), For(q, 1, N))), For(N, Infinity)), Div(6, Pow(Pi, 2)))),
References("H. Jager, On the number of Dirichlet characters with modulus not exceeding x, Indagationes Mathematicae, Volume 76, Issue 5, 1973, Pages 452-455, https://doi.org/10.1016/1385-7258(73)90069-3"))