Assumptions:
TeX:
\left|P''_{n}(x)\right| \le \frac{{2}^{5 / 2}}{\sqrt{\pi}} \frac{{n}^{3 / 2}}{{\left(1 - {x}^{2}\right)}^{5 / 4}}
n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; -1 < x < 1Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Abs | Absolute value | |
| ComplexDerivative | Complex derivative | |
| LegendrePolynomial | Legendre polynomial | |
| Pow | Power | |
| Sqrt | Principal square root | |
| Pi | The constant pi (3.14...) | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("3b175b"),
Formula(LessEqual(Abs(ComplexDerivative(LegendrePolynomial(n, x), For(x, x, 2))), Mul(Div(Pow(2, Div(5, 2)), Sqrt(Pi)), Div(Pow(n, Div(3, 2)), Pow(Sub(1, Pow(x, 2)), Div(5, 4)))))),
Variables(n, x),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Less(-1, x, 1))))