Assumptions:
TeX:
\sum_{\chi \in G_{q}} \chi(n) = \begin{cases} \varphi(q), & n \equiv 1 \pmod {q}\\0, & \text{otherwise}\\ \end{cases} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
DirichletGroup | Dirichlet characters with given modulus | |
Totient | Euler totient function | |
ZZGreaterEqual | Integers greater than or equal to n | |
ZZ | Integers |
Source code for this entry:
Entry(ID("3ab92d"), Formula(Equal(Sum(chi(n), ForElement(chi, DirichletGroup(q))), Cases(Tuple(Totient(q), CongruentMod(n, 1, q)), Tuple(0, Otherwise)))), Variables(q, n), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(n, ZZ))))