Assumptions:
TeX:
\begin{pmatrix} F_{n + m} \\ F_{n + m - 1} \end{pmatrix} = {\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}}^{m} \begin{pmatrix} F_{n} \\ F_{n - 1} \end{pmatrix} n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; m \in \mathbb{Z}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fibonacci number | |
Pow | Power | |
Matrix2x2 | Two by two matrix | |
ZZ | Integers |
Source code for this entry:
Entry(ID("3a9c67"), Formula(Equal(Matrix2x1(Fibonacci(Add(n, m)), Fibonacci(Sub(Add(n, m), 1))), Mul(Pow(Matrix2x2(1, 1, 1, 0), m), Matrix2x1(Fibonacci(n), Fibonacci(Sub(n, 1)))))), Variables(n, m), Assumptions(And(Element(n, ZZ), Element(m, ZZ))))