Assumptions:
References:
- H. Rademacher, Topics in analytic number theory, Springer, 1973. Equation 43.3.
TeX:
\left|\zeta\!\left(s\right)\right| \lt 3 \left|\frac{1 + s}{1 - s}\right| {\left|\frac{1 + s}{2 \pi}\right|}^{\left( 1 + \eta - \operatorname{Re}\left(s\right) \right) / 2} \zeta\!\left(1 + \eta\right) s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \eta \in \mathbb{R} \,\mathbin{\operatorname{and}}\, s \ne 1 \,\mathbin{\operatorname{and}}\, \eta \in \left(0, \frac{1}{2}\right] \,\mathbin{\operatorname{and}}\, -\eta \le \operatorname{Re}\!\left(s\right) \le 1 + \eta
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Abs | Absolute value | |
RiemannZeta | Riemann zeta function | |
Pow | Power | |
ConstPi | The constant pi (3.14...) | |
Re | Real part | |
CC | Complex numbers | |
RR | Real numbers | |
OpenClosedInterval | Open-closed interval |
Source code for this entry:
Entry(ID("3a5eb6"), Formula(Less(Abs(RiemannZeta(s)), Mul(Mul(Mul(3, Abs(Div(Add(1, s), Sub(1, s)))), Pow(Abs(Div(Add(1, s), Mul(2, ConstPi))), Div(Sub(Add(1, eta), Re(s)), 2))), RiemannZeta(Add(1, eta))))), Variables(s, eta), Assumptions(And(Element(s, CC), Element(eta, RR), Unequal(s, 1), Element(eta, OpenClosedInterval(0, Div(1, 2))), LessEqual(Neg(eta), Re(s), Add(1, eta)))), References("H. Rademacher, Topics in analytic number theory, Springer, 1973. Equation 43.3."))