TeX:
\sum_{n=0}^{\infty} \frac{1}{x_{n}^{3}} = -{\gamma}^{3} - \frac{\gamma {\pi}^{2}}{2} - 4 \zeta\!\left(3\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
Pow | Power | |
DigammaFunctionZero | Zero of the digamma function | |
Infinity | Positive infinity | |
ConstGamma | The constant gamma (0.577...) | |
Pi | The constant pi (3.14...) | |
RiemannZeta | Riemann zeta function |
Source code for this entry:
Entry(ID("39ce44"), Formula(Equal(Sum(Div(1, Pow(DigammaFunctionZero(n), 3)), For(n, 0, Infinity)), Sub(Sub(Neg(Pow(ConstGamma, 3)), Div(Mul(ConstGamma, Pow(Pi, 2)), 2)), Mul(4, RiemannZeta(3))))))