Assumptions:
TeX:
R_F\!\left(x + \lambda, y + \lambda, \lambda\right) + R_F\!\left(x + \mu, y + \mu, \mu\right) = R_F\!\left(x, y, 0\right)\; \text{ where } \mu = \frac{x y}{\lambda} x \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; \lambda \in \mathbb{C} \setminus \left(-\infty, 0\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonRF | Carlson symmetric elliptic integral of the first kind | |
OpenInterval | Open interval | |
Infinity | Positive infinity | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval |
Source code for this entry:
Entry(ID("38fa65"), Formula(Where(Equal(Add(CarlsonRF(Add(x, lamda), Add(y, lamda), lamda), CarlsonRF(Add(x, mu), Add(y, mu), mu)), CarlsonRF(x, y, 0)), Def(mu, Div(Mul(x, y), lamda)))), Variables(x, y, lamda), Assumptions(And(Element(x, OpenInterval(0, Infinity)), Element(y, OpenInterval(0, Infinity)), Element(lamda, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))